Newsletter
Don't miss a thing!
We regularly provide you with the most important news, articles, topics, projects and ideas for One World – No Hunger.
Newsletter
Don't miss a thing!
We regularly provide you with the most important news, articles, topics, projects and ideas for One World – No Hunger.
Please also refer to our data protection declaration.
By Henriette Stehr, Nora Adelhardt, Brendon Bingwa and Susanne Wolf
Agrivoltaics is a concept that combines photovoltaic electricity generation and agricultural production, providing the opportunity for a more efficient land use and contributing overall to the integration of food, energy and water systems. This can be particularly interesting for countries in the Global South, where rural electrification rates are often low and food security needs to be improved. A research project in Mali and The Gambia is to explore the potential of the system, with a focus on community integration and integrative funding.
This interview appeared first in Rural21 and is part of a media cooperation between Rural21 and foodfortransformation.org.
Agrivoltaics is a concept based on dual land use, where a single area is used both for agricultural production and photovoltaic (PV) power generation. Although first mentioned in 1982, development has gained momentum only in recent years. As of 2021, there are 14 gigawatt-peak (GWp) of installed capacity world-wide.
In agrivoltaic systems, PV panels are mounted on a substructure on the agricultural land and generate sustainable electricity, while agriculture production takes place underneath or between the PV module rows. When installed above, the increased height of the installation provides enough space for farming activities underneath.
This has many potential advantages, including higher land-use efficiency as well as shading and physical cover provided by the panels altering the microclimate and protecting crops and soils, possibly leading to higher crop yield and quality. A field trial conducted by the Fraunhofer Institute for Solar Energy Systems in Germany has shown that the simultaneous use of land can increase land-use efficiency by up to 84 per cent (depending on the crop type) and can therefore be considered as a resource-efficient way of improving land productivity and enhancing food security.
Most current agrivoltaic systems are located in the Global North, with the first pilot plant in Germany being installed in 2016. However, the potential for agrivoltaics in the Global South is extremely high as the potential advantages and opportunities could be especially significant in these regions. Against this background, the APV-MaGa project was launched in 2020. In its context, five agrivoltaic systems will be installed in Mali and The Gambia, two countries with which the project partners are already cooperating in the context of the water-energy-food nexus. Both of them are located in the Sahel Region, one of the areas most vulnerable to climate change, and at high risk of droughts. High solar radiation levels and the population’s dependence on agriculture put even more stress on the need for sustainable water management, especially with fertile arable land becoming increasingly scarce. Because of the increasing impact climate change is having on agriculture and growing energy demands, both countries need innovative and sustainable energy solutions and improvements in food security.
The agrivoltaic systems are to provide food, water and electricity to local communities and simultaneously increase the resilience of the agricultural sector to climate change effects.
There are plans for the construction of one 200-kilowatt-peak (kWp) system in Mali by the end of 2023 and four smaller systems, up to 62.5 kWp, in The Gambia, by the end of the first quarter of 2024. While in Mali the system will be installed in the grounds of the Rural Polytechnic Institute of Training and Applied Research in Katibougou, the systems in The Gambia are intended to be set up at the University of The Gambia, a small private farm and two community farm sites. The mix of different farm types will allow both traditional scientific research, in which conditions are more strictly controlled, and non-traditional research, where community involvement will require flexibility in the scientific approach (e.g. local farming practices will be implemented, social interaction with the system will be considered, etc.). The photovoltaic (PV) modules are to be installed at a height of 2.5 metres to enable the use of farming machinery underneath the system and to obtain a higher energy gain from the used bifacial PV modules, which also generate electricity from their rear side. Some of the demonstrators include a rainwater harvesting system, with the rainwater being collected in a gutter between the modules and stored in tanks at a height of about five metres. Solar pumps will be used for the distribution to the target areas.
The electricity generated by the systems is planned to power supplementary equipment such as cold-rooms, post-harvest processing equipment and irrigation systems, which will be built as part of the project. The crops underneath the agrivoltaic systems are to include those already commonly cultivated by local farmers, such as onions, tomatoes, potatoes, okra and green beans, as well as high economic value crops that may not have previously been possible to cultivate because of the harsher climatic conditions, such as strawberry and broccoli.
Research data will be collected and supplied by the local partners beyond the life of the project, providing long-term data, which is essential to accurately assess the impact of the agrivoltaic systems in the local climatic and socio-economic conditions.
Economically, multiple short- and long-term effects are to be expected. For instance, farmers’ income may be increased in general through the sale of higher yields and higher quality crops, as well as better timing of the market allowing crops preserved through cold storage to be sold at higher prices at times of high demand/low availability. Also, the more efficient irrigation and the increasing availability of self-generated electricity lower the expenses needed to run the farm. In the long run, additional income may lead to investments and enable the expansion to non-local markets. The additional equipment connected to the agrivoltaic system also allows farmers and farming communities to diversify revenue streams and increase income through the sale of services to the surrounding communities.
One important aspect of the project is the realisation of a community-based approach, especially in The Gambia. This has multiple implications, starting with an active communication with local partners and community members.
Participatory schemes and acceptance studies are used to evaluate this exchange. Secondly, the project team plans group discussions with local farmers and other potential smallholders, to be able to understand and consider individual needs and ideas. Thereby, technical know-how and engagement of the farmers can also be integrated into the project. A co-design workshop with important stakeholders will be organised to ensure that the system is adapted to regional factors. The focus lies on developing a sustainable business model for the long-term success of the agrivoltaic systems. Additionally, a local organisation will be established in both countries to include financial stakeholders and community members in the decision-making process. These organisations will take care of the long-term maintenance of the systems.
While the project is still in its planning phase, funding has proven to be a significant challenge. One of the goals is to include local partners’ own financial contributions. The idea is to include both public and private funding and move away from the traditional model of donor funds with little input from local partners, as this often leads to long-term problems or failure of projects. In-kind contribution (labour, equipment, use of existing infrastructure, etc.) by the local partner is also considered a form of funding. But as APV-MaGa is a research & development project, it is hard to secure the investment of private companies. These conflicting interests between private and public funders require a lot of communication. The project aims to bridge the gap between these two interest groups for a new, more integrative and sustainable financing approach in accordance with the overall goal of the project. Based on their experiences with previous failed projects, the local partners agree that this approach could be a way to mitigate the problems and are therefore keen to also explore ways to secure their contributions, either in cash or in-kind.
While the potential of agrivoltaics for the Global South is high, much research data is still required.
In the crop-farming sector, this applies to the impact of shading on the micro-climate below the PV modules, the subsequent effect on the crops and the most suitable crops that can be grown under these altered conditions.
As the upfront costs of the systems may be a barrier to their wide-scale implementation in the Global South, further research is also needed on solutions that could reduce costs and/or provide a positive return on investment. Suitable finance and business models have to be examined, with some of them possibly being transferrable from other settings. For the African context, the models described e.g. by Horvath (“host-owned” or “community-owned”, but also “pay-as-you-go”, to name some) could be appropriate. The use of alternative construction materials (such as bamboo and wood) and material use-efficiency through innovations including the integration of rainwater harvesting into the substructure are further examples of current and future research focus. Higher upfront costs and uncertainty over the effect of shading on crops serve as the main points against agrivoltaic systems in the target regions. It is difficult to justify higher system costs, given the extremely low electricity access rates, while not all crops respond positively to shading and changes in micro-climate, hence crop yield could be reduced, rather than being increased.
And last but not least, one of the key factors for the success of the system is to gain more insights on its acceptance among the local population.